机器人路径规划
基础路径规划算法
1. A*算法
A*算法是一种启发式搜索算法,通过评估函数选择最优路径。 它结合了Dijkstra算法的完备性和贪心算法的效率。
算法特点
- 使用启发式函数估计到目标点的距离
- 保证找到最优路径
- 适用于静态环境
- 计算效率较高
Python实现示例:
import numpy as np
from heapq import heappush, heappop
class AStar:
def __init__(self, grid):
self.grid = grid
self.rows, self.cols = grid.shape
def heuristic(self, a, b):
"""计算启发式函数值(曼哈顿距离)"""
return abs(a[0] - b[0]) + abs(a[1] - b[1])
def get_neighbors(self, node):
"""获取相邻节点"""
x, y = node
neighbors = []
for dx, dy in [(0, 1), (1, 0), (0, -1), (-1, 0)]:
nx, ny = x + dx, y + dy
if 0 <= nx < self.rows and 0 <= ny < self.cols and self.grid[nx, ny] == 0:
neighbors.append((nx, ny))
return neighbors
def find_path(self, start, goal):
"""寻找路径"""
frontier = []
heappush(frontier, (0, start))
came_from = {start: None}
cost_so_far = {start: 0}
while frontier:
current = heappop(frontier)[1]
if current == goal:
break
for next_node in self.get_neighbors(current):
new_cost = cost_so_far[current] + 1
if next_node not in cost_so_far or new_cost < cost_so_far[next_node]:
cost_so_far[next_node] = new_cost
priority = new_cost + self.heuristic(goal, next_node)
heappush(frontier, (priority, next_node))
came_from[next_node] = current
# 重建路径
path = []
current = goal
while current is not None:
path.append(current)
current = came_from[current]
path.reverse()
return path2. RRT算法
快速随机树(RRT)算法是一种基于采样的路径规划算法, 适用于高维空间和复杂环境。
算法特点
- 随机采样探索空间
- 适用于高维空间
- 不保证最优解
- 计算效率高
Python实现示例:
import numpy as np
from scipy.spatial import KDTree
class RRT:
def __init__(self, start, goal, bounds, obstacles, max_iter=1000):
self.start = np.array(start)
self.goal = np.array(goal)
self.bounds = bounds
self.obstacles = obstacles
self.max_iter = max_iter
self.vertices = [self.start]
self.parents = {tuple(self.start): None}
def random_state(self):
"""生成随机状态"""
return np.random.uniform(self.bounds[:, 0], self.bounds[:, 1])
def nearest_vertex(self, state):
"""找到最近的顶点"""
vertices = np.array(self.vertices)
tree = KDTree(vertices)
return self.vertices[tree.query(state)[1]]
def new_state(self, nearest, random_state, step_size):
"""生成新状态"""
direction = random_state - nearest
norm = np.linalg.norm(direction)
if norm > step_size:
direction = direction / norm * step_size
return nearest + direction
def is_collision_free(self, state):
"""检查是否发生碰撞"""
for obstacle in self.obstacles:
if np.linalg.norm(state - obstacle) < obstacle.radius:
return False
return True
def plan(self):
"""规划路径"""
for _ in range(self.max_iter):
# 随机采样
if np.random.random() < 0.1:
random_state = self.goal
else:
random_state = self.random_state()
# 找到最近顶点
nearest = self.nearest_vertex(random_state)
# 生成新状态
new_state = self.new_state(nearest, random_state, 0.5)
# 检查是否发生碰撞
if not self.is_collision_free(new_state):
continue
# 添加新顶点
self.vertices.append(new_state)
self.parents[tuple(new_state)] = tuple(nearest)
# 检查是否到达目标
if np.linalg.norm(new_state - self.goal) < 0.5:
return self.reconstruct_path(new_state)
return None
def reconstruct_path(self, state):
"""重建路径"""
path = [state]
while state is not None:
state = self.parents[tuple(state)]
if state is not None:
path.append(state)
return path[::-1]