机器人实战案例
工业机器人应用
1. 工业机器人控制系统
工业机器人控制系统是工业自动化的核心,需要实现精确的运动控制、 轨迹规划和任务调度。本案例展示了一个基于ROS的工业机器人控制系统。
代码示例:工业机器人控制
import rospy
from moveit_commander import MoveGroupCommander
from geometry_msgs.msg import Pose
import numpy as np
class IndustrialRobot:
def __init__(self):
rospy.init_node('industrial_robot_control')
self.arm = MoveGroupCommander("manipulator")
self.gripper = MoveGroupCommander("gripper")
def move_to_position(self, x, y, z):
pose_target = Pose()
pose_target.position.x = x
pose_target.position.y = y
pose_target.position.z = z
self.arm.set_pose_target(pose_target)
self.arm.go(wait=True)
def pick_and_place(self, pick_pose, place_pose):
# 移动到抓取位置
self.move_to_position(*pick_pose)
# 抓取物体
self.gripper.set_named_target("close")
self.gripper.go(wait=True)
# 移动到放置位置
self.move_to_position(*place_pose)
# 释放物体
self.gripper.set_named_target("open")
self.gripper.go(wait=True)
def execute_trajectory(self, waypoints):
for point in waypoints:
self.move_to_position(*point)
rospy.sleep(0.5)2. 视觉引导装配系统
视觉引导装配系统结合了机器视觉和机器人控制,实现高精度的零件装配。 系统通过视觉识别零件位置,引导机器人完成装配任务。
代码示例:视觉引导装配
import cv2
import numpy as np
from industrial_robot import IndustrialRobot
class VisionGuidedAssembly:
def __init__(self):
self.robot = IndustrialRobot()
self.camera = cv2.VideoCapture(0)
def detect_part(self, image):
# 图像预处理
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (5, 5), 0)
# 边缘检测
edges = cv2.Canny(blur, 50, 150)
# 轮廓检测
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 找到最大轮廓
if contours:
max_contour = max(contours, key=cv2.contourArea)
M = cv2.moments(max_contour)
if M["m00"] != 0:
cx = int(M["m10"] / M["m00"])
cy = int(M["m01"] / M["m00"])
return (cx, cy)
return None
def assemble_parts(self):
while True:
ret, frame = self.camera.read()
if not ret:
break
part_position = self.detect_part(frame)
if part_position:
# 转换坐标到机器人坐标系
robot_x, robot_y = self.transform_coordinates(part_position)
# 执行装配
self.robot.pick_and_place(
(robot_x, robot_y, 0.1),
(robot_x + 0.1, robot_y, 0.1)
)