机器人实战案例
工业机器人应用
1. 工业机器人控制系统
工业机器人控制系统是工业自动化的核心,需要实现精确的运动控制、 轨迹规划和任务调度。本案例展示了一个基于ROS的工业机器人控制系统。
代码示例:工业机器人控制
import rospy from moveit_commander import MoveGroupCommander from geometry_msgs.msg import Pose import numpy as np class IndustrialRobot: def __init__(self): rospy.init_node('industrial_robot_control') self.arm = MoveGroupCommander("manipulator") self.gripper = MoveGroupCommander("gripper") def move_to_position(self, x, y, z): pose_target = Pose() pose_target.position.x = x pose_target.position.y = y pose_target.position.z = z self.arm.set_pose_target(pose_target) self.arm.go(wait=True) def pick_and_place(self, pick_pose, place_pose): # 移动到抓取位置 self.move_to_position(*pick_pose) # 抓取物体 self.gripper.set_named_target("close") self.gripper.go(wait=True) # 移动到放置位置 self.move_to_position(*place_pose) # 释放物体 self.gripper.set_named_target("open") self.gripper.go(wait=True) def execute_trajectory(self, waypoints): for point in waypoints: self.move_to_position(*point) rospy.sleep(0.5)
2. 视觉引导装配系统
视觉引导装配系统结合了机器视觉和机器人控制,实现高精度的零件装配。 系统通过视觉识别零件位置,引导机器人完成装配任务。
代码示例:视觉引导装配
import cv2 import numpy as np from industrial_robot import IndustrialRobot class VisionGuidedAssembly: def __init__(self): self.robot = IndustrialRobot() self.camera = cv2.VideoCapture(0) def detect_part(self, image): # 图像预处理 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) blur = cv2.GaussianBlur(gray, (5, 5), 0) # 边缘检测 edges = cv2.Canny(blur, 50, 150) # 轮廓检测 contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # 找到最大轮廓 if contours: max_contour = max(contours, key=cv2.contourArea) M = cv2.moments(max_contour) if M["m00"] != 0: cx = int(M["m10"] / M["m00"]) cy = int(M["m01"] / M["m00"]) return (cx, cy) return None def assemble_parts(self): while True: ret, frame = self.camera.read() if not ret: break part_position = self.detect_part(frame) if part_position: # 转换坐标到机器人坐标系 robot_x, robot_y = self.transform_coordinates(part_position) # 执行装配 self.robot.pick_and_place( (robot_x, robot_y, 0.1), (robot_x + 0.1, robot_y, 0.1) )